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Abstract
Non-bosonic commutation relations of exciton operators discovered by Keldysh
and Kozlov (1968 Zh. Eksp. Teor. Fiz. 54 978; 1968 Sov. Phys.—JETP 27 521
(Engl. Transl.)) led to a long-standing question about the possible difference
between excitons and bosons in spite of the integer spin of excitons. In this
paper the problem is analysed and it is shown that, in spite of the difference
between separate excitons and bosons, the exciton gas is a Bose gas. Bosons
comprising this gas are mixtures of separate excitons, and the non-bosonic
nature of excitons leads only to a renormalization of the interaction between
them. Features of the exciton luminescence coming from the interaction and
non-bosonic nature of excitons are considered.

1. Introduction

The fact that an exciton as a bound state of two Fermi particles has an integer spin immediately
suggests that the properties of an exciton gas are similar to the properties a Bose gas. This was
first noticed by Moskalenko, who suggested that excitons can form a Bose condensate [1].

However, the situation appears not that simple when one tries to describe an exciton gas
with the help of a technique developed for a Bose gas. Keldysh and Kozlov [2] (see also [3–9])
introduced creation and annihilation exciton operators as

c†
psν = 1√

V

∑

k

φ∗
kνb

†
(mh/M)p−k,σh

a†
(me/M)p+k,σe

, (1.1a)

cpsν = 1√
V

∑

k

φkνa(me/M)p+k,σe b(mh/M)p−k,σh , (1.1b)

where ak,σe and bk,σh are the electron and hole annihilation operators, σe and σh are electron and
hole spin quantum numbers, s = σe + σs is the exciton spin quantum number, me and mh are
the electron and hole masses, M = me + mh is the exciton mass, p is the exciton momentum,
φν(k) is the Fourier component of the exciton wavefunction,

φkν =
∫

e−ikrφν(r) dr, (1.2a)

− h̄2

2m
φν(r)+ U(r)φν(r) = Eνφν(r), (1.2b)
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m = memh/M is the reduced electron–hole mass, U(r) is the interaction potential between
electrons and holes, and ν is an internal quantum number of the exciton state. Operating on the
vacuum wavefunction operator c†

pν creates the exciton wavefunction with momentum p and in
the state ν. But, in spite of the integer spin of excitons, the commutation relations of the exciton
operators,

[cpν, c†
p′ν′ ] = δp,p′δν,ν′ − 1

V

∑

k

φk+(mh/M)p,νφ
∗
k+(mh/M)p′,ν′ a†

p′+kap+k

− 1

V

∑

k

φk−(me/M)p,νφ
∗
k−(me/M)p′,ν′ b†

p′−kbp−k, (1.3)

are different for the commutation relations for Bose operators [2, 4, 7]. Generally speaking,
such a result could be expected. Indeed, according to equation (1.1), an exciton state contains
contributions from all free electron and hole states. Because of this, the second electron–hole
pair inevitably overlaps with the first one and creation of the second exciton is not the same as
creation of the first one.

In spite of this difference between excitons and bosons, theory predicts a behaviour similar
to Bose condensation [1, 2], and there is a number of claims that the Bose condensation of
excitons has been detected experimentally. A natural question is why physical properties of the
exciton gas are so similar to properties of a Bose gas, and if there is any difference at all between
a Bose gas and an exciton gas. Is it possible, in general, that a gas of particles with non-Bose
statistics behaves as a Bose gas? The absence of an answer to these questions motivated the
suggestion of a new technique to deal with a gas of particles close to bosons but different from
them [10].

It is necessary to note that the problem of the description of composite bosons has been
studied for atoms where a few formal approaches based on canonical transformations were
suggested [11–17].

The purpose of the present paper is to show that the exciton gas is physically identical to
the Bose gas. Bosons that constitute the gas are not separate excitons but mixtures of different
excitonic states. The difference between them and excitons makes the interaction between
them different from interaction between excitons and, what is more important, modifies the
exciton–electromagnetic field interaction that can be detected experimentally.

The development of the theory does not depend on the space dimensionality and, to be
specific, the whole consideration below is made for the two-dimensional (2D) case just because
the 2D results are simpler and most of the experiments where the statistics are important are
being made currently in quantum wells.

2. Analysis of the problem

First of all, it is necessary to note that the difference between the commutation relations of the
exciton operators (1.1) and the Bose operators is proportional to the density of the particles,
i.e. it is small in the dilute gas and reveals itself along with interaction between excitons [2].
Therefore the question about the similarity and difference between excitons and bosons makes
sense only for a non-ideal gas, while in an ideal gas the excitons are completely equivalent to
bosons.

As a whole, the situation looks quite contradictory: a single exciton looks like a boson
(integer spin!), while many excitons do not (commutation relations!). To understand the
physical reason behind this formal property, let us consider the wavefunctions of exciton pairs.
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A wavefunction of a single exciton,

ψγ (e, h) = 1√
S

eipRgs(σe, σh)φν(re − rh), (2.1)

depends on the coordinates of a single electron, re, and a single hole, rh . Here R =
(mere + mhrh)/M is the exciton centre-of-mass coordinate, gs is the spin wavefunction, γ
is the composite exciton quantum number that is the set of quantum numbers γ = (psν),
and S is the normalization area. Typically, a wavefunction of two non-interacting particles
is constructed as a properly symmetrized product of two single particle wavefunctions. For
excitons, this procedure leads to

�γ1γ2(e1, h1; e2, h2) = 1

2
√

1 + δγ1,γ2

[ψγ1(e1, h1)ψγ2(e2, h2)+ ψγ1(e2, h2)ψγ2(e1, h1)

− ψγ1(e1, h2)ψγ2(e2, h1)− ψγ1(e2, h1)ψγ2(e1, h2)] (2.2)

where e j and h j are sets of electron and hole coordinates, respectively. The prefactor here
is chosen in such a way that, if terms in the square brackets were mutually orthogonal, the
function would be normalized to unity. In the space of all states of two electrons and two holes,
the functions �γ1γ2 make up a complete basis and functions ψγ make up a complete basis in
the space of all states of a single electron–hole pair (see the appendix). But functions�γ1γ2 are
not orthogonal, in spite of the orthogonality of ψγ [18]. For example, function

�γ1γ3(e1, h1; e2, h2) = 1

2
√

1 + δγ1,γ3

[ψγ1(e1, h1)ψγ3(e2, h2)+ ψγ1(e2, h2)ψγ3(e1, h1)

− ψγ1(e1, h2)ψγ3(e2, h1)− ψγ1(e2, h1)ψγ3(e1, h2)] (2.3)

where γ3 �= γ2 is not orthogonal to �γ1γ2 , because the first pair of terms of �γ1γ2 are not
orthogonal to the second pair of terms of �γ1γ3 and the second pair of terms of �γ1γ2 are not
orthogonal to the first pair of terms of �γ1γ3 .

A similar situation also exists for N > 2 electron–hole pairs. It is possible to introduce a
complete basis of exciton states,

�γ1,...,γN (e1, h1; . . . ; eN , hN ) =
√

N1!N2! . . .
N !

∑
(−1)P

N∏

j=1

ψγ j (e j1, h j2) (2.4)

where the summation is carried out over all transpositions of j1 and j2 that produce non-
equivalent wavefunction products, P is the parity of the transpositions, N1, N2 and so on
are numbers equal to exciton quantum numbers,

∑
k Nk = N , and the prefactor equals the

inverse square root of the number of terms in the sum1. Functions (2.4) with different quantum
numbers are not orthogonal [18].

Non-orthogonality of the functions makes it impossible use them as a basis for second
quantization. To make this clear, it is helpful to review the regular introduction of second
quantization given in textbooks (see, e.g., [19]). The basis of the second quantization for
bosons is usually constructed of symmetrized products of single boson wavefunctions φ̃α(r).
If among N particles there are groups with N1, N2, . . . respectively equal quantum numbers
and

∑
Nk = N , then the basis functions are

�̃α1...αN (r1, . . . , rN ) =
√

N1!N2! . . .
N !

∑
φ̃α1(ri1) . . . φ̃α1(riN1

)φ̃α2(riN1+1) . . . φ̃α2(riN2
) . . .

(2.5)

1 There are N !/N1!N2! . . . non-equivalent ways to place N electrons in the product of N1 wavefunction with quantum
numbers γ1, N2 wavefunction with quantum number γ2, and so on. After that, among N ! different placing of N holes
in the product of

∑
j N j = N wavefunctions no two are equivalent.
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where the summation is carried out over all transpositions of i j or over all transpositions of
α j that produce non-equivalent function products. If φ̃α(r) are orthogonal, then �̃α1...αN with
different sets of quantum numbers are also orthogonal. These wavefunctions are completely
characterized by occupation numbers of different single particle states, N1, N2, . . .. As a result,
the matrix elements of any symmetric single particle operator,

F =
N∑

j=1

f j , (2.6)

where f j operates only on functions of the j th particle, have the form

〈N1 . . . N j − 1 . . . Nk + 1 . . . |F |N1 . . . N j . . . Nk . . .〉 = 〈αk | f |α j 〉
√

N j (Nk + 1). (2.7)

Factor
√

N j (Nk + 1) comes from factorial prefactors and the number of terms in the sums (2.5).
This factor makes it possible to introduce creation and annihilation operators, c†

α and cα , and to
write operator (2.6) as

F =
∑

jk

〈αk | f |α j〉c†
αk

cα j . (2.8)

This rule is generalized to many particle symmetric operators. If functions φ̃α(r) and, along
with them, functions (2.5) are not orthogonal, then matrix elements of F are not reduced to
form (2.7) and it is impossible to introduce creation and annihilation operators that reduce
operator F to the form of (2.8).

It makes sense to point out another disadvantage of the basis (2.5) non-orthogonality.
Transformation of the Schrödinger equation for an electron–hole gas,

H
 = E
, (2.9)

to this basis with the help of expansion


 =
∑

�

C��� (2.10)

where � = (γ1, γ2, . . .) results in
∑

�′
H��′ C�′ = E

∑

�′
N��′ C�′ . (2.11)

Here

H��′ = 〈�� |H|��′ 〉, N��′ = 〈��|��′ 〉. (2.12)

The normalization matrix N is not the unity matrix, and because of this equation (2.11) does
not have the form of the Schrödinger equation. This means that H��′ cannot be considered as
matrix elements of the Hamiltonian.

3. Bose operators for exciton gas

The non-orthogonality of the basis (2.2) for two excitons and basis (2.4) looks a bit strange,
because the Hamiltonian of N electron–hole pairs,

H =
∑

j

(
− h̄2∇2

ej

2me
− h̄2∇2

h j

2mh

)

+
∑

i j

ueh(|rei − rh j |)+ 1

2

∑

i j

[
uee(|rei − rej |)+ uhh(|rhi − rh j |)

]
(3.1)
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(where re and rh are electron and hole coordinates, me and mh are electron and hole masses,
and ui j is the interaction energy between particles of the i th and j th kind) is Hermitian and
its eigenfunctions are orthogonal. This means that the difficulty is not in the essence of the
problem but in the poor approximation of the eigenfunctions by equations (2.2) and (2.4).

The ‘non-orthogonality catastrophe’ can be removed by orthogonalization of basis (2.4):

�
(ort)
� =

∑

�1

��1N−1/2
�1,�

, 〈�(ort)
� |�(ort)

�′ 〉 = δ�,�′ . (3.2)

Then the expansion


 =
∑

�

F��
(ort)
� , (3.3)

leads to the Schrödinger equation

HX F = E F (3.4a)

with the Hamiltonian

HX = N−1/2〈�|H|�〉N−1/2. (3.4b)

However, technically the exact orthogonalization of the basis and the calculation of HX

is not tractable. Behind the mathematical difficulty there is a physical reason. The exactly
orthogonolized exciton basis describes all states of the electron–hole system, including free
carrier states. The description of free states with the help of the exciton basis is even more
difficult than the description of exciton states with the free carrier basis. The situation is
simplified under the conditions that guarantee that most of the free carriers are bound in
excitons and the unbound states can be neglected. There are two such conditions [20].

The first condition is that the average exciton kinetic energy Ek (in equilibrium this is the
temperature of the exciton gas) is small compared to the exciton binding energy, Eb:

Ek/Eb 	 1. (3.5)

If this inequality is violated, most of the excitons are ionized and we deal with the electron–hole
plasma.

The second condition is that the exciton radius a is small compared to the average distance
between the excitons, n−1/2, where n is the exciton concentration,

na2 	 1. (3.6)

When the average distance between excitons becomes comparable with their radius, i.e., they
overlap, they are destroyed due to the Mott transition and the exciton gas becomes the electron–
hole plasma.

If condition (3.5) is met, then excited exciton states can be discarded, i.e. the exciton
internal quantum number ν corresponds to the ground state. However, the absolute neglect
of the excited states makes the basis (2.5) not complete, and more accurate consideration is
necessary.

To reduce the consideration to the ground-state excitons only, it is convenient to break the
complete exciton basis (2.4) into two parts: (1) states where there are only ground-state single
exciton wavefunctions and (2) states containing at least one wavefunction of an excited exciton
state. Then equation (2.11) can be written in the following matrix form:

(H11 − EN11)C1 + (H12 − EN12)C2 = 0, (3.7a)

(H21 − EN21)C1 + (H22 − EN22)C2 = 0, (3.7b)

5
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where C1 and C2 are states belonging to the first and the second parts of the basis, respectively.
C2 can be eliminated from equation (3.7a) with the help of equation (3.7b), leading to an
equation that formally contains only ground-state exciton wavefunctions:

(H11 − EN11)C1 − H(X X)C1 = 0. (3.8)

The last term in this equation describes the effect of the excited states,

H(X X) = (H12 − EN12) (H22 − EN22)
−1 (H21 − EN21) . (3.9)

Equation (3.8) strongly differs from the Schrödinger equation because (1) it describes all
possible states of the exciton gas including an electron–hole plasma and as a result operator
H(X X) is a nonlinear function of E , and because (2) it is written in a non-orthogonal basis and
N11 is not the unity matrix. However, under conditions (3.2) and (3.3) the matrix elements of
this operator are reduced to [20]

H(X X)
νν′ =

∑

μ

(H12 + N12 N Eb)νμ(H21 + N21 N Eb)μν′

Eμ + N Eb
, (3.10)

where ν and ν ′ enumerate states in subspace 1, μ and μ′ enumerate states in subspace 2, and
Eμ are eigenvalues of H22. That is, H(X X)

νν′ is the interaction Hamiltonian between ground-state
excitons via excited states.

The normalization matrix N11 can be presented as

N11 = I + A, (3.11)

where I is the unity matrix. The main contribution to the non-diagonal matrix A = A† comes
from the integrals of products of functions �γ1,...,γN , equation (2.4), that differ by transposition
of only one pair of electrons or holes. The integration produces the factor a2/S. Contributions
to A containing integrals of products of the functions different by transposition of more than
one pair of electrons or holes bring higher powers of a2/S. Eventually, in the calculation of
observable quantities, each factor of 1/S is accompanied by a sum over occupied states of the
system, which gives the factor of N . Thus off-diagonal elements of A are characterized by the
factor na2. Terms of the same order can be separated in matrix H11:

H11 = H0 + H1, (3.12)

where H0 is the Hamiltonian of free excitons and H1 ∼ a2/S describes their interaction.
Neglecting terms of the second order in a2/S, the diagonalization of equation (3.8) results
in equation (3.4a), where the exciton Hamiltonian HX contains a few contributions:

HX = H0 + Hint + Hex. (3.13)

Here H0 is the Hamiltonian of non-interacting excitons,

Hint = H1 + H(X X) (3.14a)

is the Hamiltonian of potential interaction, and

Hex = − 1
2 (AH0 + H0A) (3.14b)

is the exchange interaction Hamiltonian. After the second quantization [20, 21],

HX =
∑

k,s

Ekc†
k,sck,s + 1

2S

∑

k1,k2,q
s1,s2

[
Ud(q)− V1

]
c†
k2,s2

c†
k1,s1

ck1−q,s1 ck2+q,s2

+ Vx

4S

∑

k1,k2,q

[
∑

s1s2

c†
k1s1

c†
k2−s1

ck1−qs2 ck2+q−s2

− 4
∑

s

c†
k1sc†

k2−sck1−qsck2+q−s + 2
∑

s1s2

c†
k1s1

c†
k2s2

ck1−qs1 ck2+qs2

]
. (3.15)
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A natural question is about the effect of the non-bosonic nature of excitons on the exciton
Hamiltonian. To answer this question, it is enough to notice that the difference between excitons
and true bosons comes from the overlap integrals that make basis (2.4) non-orthogonal. These
overlap integrals enter the matrix elements H��′ in equation (2.11) and also make normalization
matrix N different from the unit matrix that enters HX via the exchange Hamiltonian Hex. It is
easy to see that, in the accepted approximation, the non-bosonic nature of excitons changes the
values of the interaction matrix elements only.

It is important to note, however, that there exist overlap integrals of functions (2.4)
different by transposition of two, three, or more electrons and/or holes, which are neglected in
equation (3.15). In higher orders in na2 these overlap integrals bring in the exciton Hamiltonian
an interaction between three-, four-, and higher number of excitons, in spite of all this being
provided by the Coulomb interaction, which has a two-particle nature.

Direct observation of excitons is carried out in optical experiments. Therefore it is very
important to find out what is the effect of the non-bosonic exciton nature on the interaction
between excitons and electromagnetic field. This problem is discussed in the next section.

4. Interaction of excitons with electromagnetic field

Interaction with an electromagnetic field leads to the recombination or creation of an exciton.
In a dilute exciton gas the corresponding interaction Hamiltonian is (see, e.g., [22])

H(1)
X−em =

∑

k,s=±1
q,κ

(
Mqκ

ks a†
qκcks + Mqκ∗

ks c†
ksaqκ

)
, (4.1)

where a†
qκ and aqκ are creation and annihilation operators of a photon with wavevector q and

polarization κ (κ = α for polarization vectors in the (q, z) plane and κ = β for polarization
vectors perpendicular to this plane), and c†

ks and cks are creation and annihilation operators of a
ground-state exciton with wavevector k and spin s. The orthogonalization of the exciton basis
leads to a nonlinear exciton–photon Hamiltonian [9, 21, 23, 24],

HX−em = H(1)
X−em + H(2)

X−em, (4.2a)

H(2)
X−em =

∑

k1σ1;k2σ2
kσ ;qκ

(
Mkσ ;qκ

k1σ1;k2σ2
a†

qκc†
kσ ck1σ1 ck2σ2 + Mkσ ;qκ∗

k1σ1;k2σ2
c†
k1σ1

c†
k2σ2

aqκckσ

)
. (4.2b)

There are two clearly distinguished contributions to the Hamiltonian H(2)
X−em [21]. One comes

from the exciton–exciton interaction and means that the amplitude of creation or recombination
of an exciton depends on the presence of other excitons around it. The other contribution
comes from the overlap (non-orthogonality) of the exciton wavefunctions and, in the case of
recombination, means that an electron and a hole of two different excitons recombine, leaving
behind one hole and one electron that form a new exciton.

The nonlinear exciton–photon interaction (4.2) leads to saturation of the exciton oscillator
strength [9] and saturation of the exciton concentration under strong pumping [24]. This
interaction can also substantially affect the collisional broadening of the exciton luminescence
line. The point is that, in the linear recombination process described by the Hamiltonian (4.1),
the momentum of the recombining exciton is strongly limited by the momentum conservation
law, and this applies a very strong limitation on the photon energy. In the nonlinear
recombination process the remaining exciton can carry any momentum and the limitation on the
photon energy is lifted. Ciuti et al have shown that the linear collisional broadening produced a
line with the width of the exciton spectral width, � [25]. The broadening coming from H(2)

X−em
is controlled by the energy distribution of the remaining exciton, i.e. it can be of the order of

7



J. Phys.: Condens. Matter 19 (2007) 295214 B Laikhtman

the exciton temperature. The expression for the luminescence intensity of the non-degenerate
exciton gas in the direction perpendicular to the quantum well can be written as

Iqκ = S A2ω2
qλκ

[
nX

�

(h̄ωq − Eth)2 + �2
+ Ma2

h̄2

n2
X

nX0
r

( |Eth − h̄ωq |
T

,
3�

T

)]
, (4.3)

where A2 and nX0 ≈ πa2 are constants related to the matrix elements, M and a are the exciton
mass and radius, λα = cos2 θ , λβ = 1, θ is the angle between the photon wavevector q and the
normal to the quantum well, q‖ is the in-plane component of q, h̄ωq is the photon energy, Eth

is the threshold energy for exciton creation, nX is the exciton concentration, and

r(u, v) =
∫ ∞

0
e−x

[
v

(u + x)2 + v2
+ v

(u − x)2 + v2

]
dx . (4.4)

The exciton spectrum is well defined when � 	 T , and in this case

r

( |Eth − h̄ωq |
T

,
3�

T

)
= e−|Eth−h̄ωq |/T . (4.5)

That is, except for the linear peak studied by Ciuti et al [25], the luminescence line contains a
nonlinear background of the temperature width and the intensity that grows quadratically with
exciton concentration.

5. Conclusion

In conclusion, the answer to the question posed in the title of the paper is the following: each
separate exciton is not a boson, but the gas of excitons is a Bose gas. A formal difference
between excitons and bosons comes from the non-orthogonality of multi-exciton wavefunctions
constructed by symmetrization of the product of wavefunctions of separate excitons. The
physics behind this is that, due to identity of electrons and holes in different excitons, true
bosons are not separate excitons consisting of a given electron and a given hole but mixtures
of all electrons and holes with the proper symmetry. In other words, the difference between
separate excitons and true bosons comes from exchange interaction between their constituents.
Formally, the multi-boson wavefunctions are obtained by orthogonalization of the multi-exciton
wavefunctions. Additional terms in the Hamiltonian resulting from the orthogonalization are
just corrections to exciton–exciton interaction matrix elements. The exciton–exciton interaction
and the non-bosonic nature of separate excitons lead also to a nonlinear interaction between
bosons and photons. Among the effects of this interaction, there is a collisionally broadened
luminescence with an intensity proportional to the exciton concentration squared and the width
of the order of the exciton temperature.

Appendix. Two-exciton states basis

The completeness of the basis equation (2.2) is clear from the following consideration.
Functions ψγ (e, h) comprise a complete basis in the space of all states of one electron–
hole pair. That is, any two-exciton wavefunction f (e1, h1; e2, h2) can be represented as a
series in ψγ1(e1, h1) with coefficients depending on e2, h2. For the same reason, each of
these coefficients can be represented as a series in ψγ2(e2, h2). Due to the antisymmetry of
f (e1, h1; e2, h2) with respect to the transposition of electrons and the transposition of holes,
such an expansion is reduced to an expansion in functions (2.2):

f (e1, h1; e2, h2) =
∑

(γ1γ2)

f(γ1γ2)�(γ1,γ2)(e1, h1; e2, h2). (A.1)

8
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The basis functions are symmetric with respect to transposition quantum numbers γ1 and γ2;
the pair of them can be considered as a composite quantum number of a two-exciton state.
To emphasize this point, the pair of single exciton quantum numbers forming a two-exciton
quantum number is put in parentheses in this appendix. The summation

∑
(γ1γ2)

implies the
summation over all different pairs of γ1 and γ2, i.e.

∑

(γ1,γ2)

=
∑

γ1=γ2

+ 1
2

∑

γ1 �=γ2

. (A.2)

The basis functions are not orthogonal,
∫
�∗
(γ1,γ2)

(e1, h1; e2, h2)�(γ3,γ4)(e1, h1; e2, h2) de1 dh1 de2 dh2 = N(γ1,γ2),(γ3,γ4), (A.3)

and to find the the coefficients in expansion (A.1) it is necessary to introduce a dual basis,

�̃(γ1,γ2)(e1, h1; e2, h2) =
∑

(γ3,γ4)

N−1
(γ1,γ2),(γ3,γ4)

�∗
(γ3,γ4)

(e1, h1; e2, h2) (A.4)

that satisfies the orthogonality and normalization relation:
∫
�̃(γ1,γ2)(e1, h1; e2, h2)�(γ3,γ4)(e1, h1; e2, h2) de1 dh1 de2 dh2 = δ(γ1,γ2),(γ3,γ4). (A.5)

The unit matrix in the symmetric space is expressed in regular Kronecker symbols as

δ(γ1,γ2),(γ3,γ4) = δγ1γ3δγ2γ4 + δγ1γ4δγ2γ3√
(1 + δγ1γ2)(1 + δγ3γ4)

. (A.6)

Then

f(γ1,γ2) =
∫
�̃(γ1,γ2)(e1, h1; e2, h2) f (e1, h1; e2, h2) de1 dh1 de2 dh2. (A.7)

Substitution of equation (A.7) in equation (A.1) gives

f (e1, h1; e2, h2) =
∫

f (e3, h3; e4, h4) de3 dh3 de4 dh4

×
∑

(γ1γ2)

�(γ1,γ2)(e1, h1; e2, h2)�̃(γ1,γ2)(e3, h3; e4, h4). (A.8)

This relation takes place for any function f (e1, h1; e2, h2) that has the necessary symmetry.
Therefore the sum equals the symmetrized δ-function,
∑

(γ1γ2)

�(γ1,γ2)(e1, h1; e2, h2)�̃(γ1,γ2)(e3, h3; e4, h4)

= 1
4

[
δ(e1 − e3)δ(e2 − e4)δ(h1 − h3)δ(h2 − h4)

− δ(e1 − e4)δ(e2 − e3)δ(h1 − h3)δ(h2 − h4)

− δ(e1 − e3)δ(e2 − e4)δ(h1 − h4)δ(h2 − h3)

+ δ(e1 − e4)δ(e2 − e3)δ(h1 − h4)δ(h2 − h3)
]
, (A.9)

i.e. the δ-function in symmetric space. Equation (A.9) is the completeness relation of the
�(γ3,γ4)(e1, h1; e2, h2) basis.
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